Recognizes endogenous levels of 14-3-3 zeta protein.
The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways . 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, ?, ?, ?, ?, ?, ?, and ? that have been identified in mammals. The initially described ? and ? isoforms are confirmed to be phosphorylated forms of ? and ?, respectively . Through their amino-terminal ? helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules . The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed . 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions . 14-3-3 proteins may also induce target protein conformational changes that modify target protein function . Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities . Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes .
Delivery time
Overnight if in stock
Payment Methods
Purchase orders from approved customers and Credit Cards are accepted as forms of payment